Con solo 20 genes se obtiene un boceto de la cara. / Bernardo Pérez
Desarrollados los primeros programas que deducen el rostro a partir del ADN
Pueden beneficiarse desde la antropología a los forenses
La estrella de la 150ª temporada de la popular serie CSI, cuando se filme, bien podrá llamarse
Grissom. El nombre será un homenaje al más famoso jefe de la policía científica de Las Vegas, pero este
Grissom será un ordenador con una capacidad especial: la de ofrecer el rostro de un sospechoso o víctima a partir de un pelo —o de otros materiales menos nobles—, con tal de que tengan suficiente ADN bien conservado en él. A lo mejor los productores, siempre deseosos de captar audiencia, ni siquiera esperan a que sea una realidad. En las series basta la verosimilitud, y esta ya está aquí. Lo demostró a finales de marzo un equipo dirigido por Peter Claes, de la
Universidad de Leuven (Bélgica), que publicó en
PLOS Genetics un trabajo en el que se relacionaban los genes con los rasgos faciales de un grupo de voluntarios.
En verdad, el trabajo se hizo al revés, de la cara a los genes: para ello se convocó a 592 voluntarios de orígenes europeos y del oeste de África de Cabo Verde, Brasil y Estados Unidos. Se limitó su edad a que tuvieran entre 18 y 40 años para no añadir un factor de estudio más, como puede ser el envejecimiento, con sus efectos en el aspecto. Se tomaron imágenes tridimensionales de sus caras y se construyeron modelos en los que se establecieron 7.000 puntos de referencia.
Por otro lado, se tomaron sus genomas, y se buscaron las variaciones en una sola letra de la cadena (los SNP), sobre todo en genes que ya se sabía que estaban relacionados con la forma de la cara, por ejemplo porque tuvieran mutaciones que se supiera que causaban deformidades. En total, se centraron en 24 mutaciones de 20 genes. El resultado, como señalaban desde el mismo título, era un mugshot, la foto que nunca se parece de verdad al detenido que se toma en las comisarías de EE UU. O, para ser más exactos, una especie de retrato robot.
Luego le tocó el turno a la informática. Una vez establecidas las mutaciones y el aspecto que tenían los mutantes (todos lo somos de alguna manera; si no seríamos todos iguales) se escribió un algoritmo informático que lo relacionaba. Cuestiones como la altura de los pómulos, la separación de los ojos o el ancho de la nariz fueron codificados.
Otros rasgos no hizo falta trabajarlos tanto: ya se sabe cómo son los genes que determinan el color de los ojos o el pelo. Curiosamente, los científicos se niegan a hablar de razas. Ellos solo indican antecedentes, antepasados. La globalización y el mestizaje no permiten hacer una clasificación sistemática de los rasgos; ni siquiera del color de la piel. Y esto era algo que sabían bien los autores del ensayo.
Lo resalta Ángel Carracedo, profesor de Anatomía Patológica y Ciencias Forenses en Medicina Genómica de la
Universidad de Santiago. “El artículo lo conozco muy bien por conocer a todos los autores. Su punto fuerte está en la utilización de la población de Cabo Verde que tiene la ventaja de tener una mezcla reciente, lo que favorece el análisis y el encontrar SNP asociados a rasgos tan complejos como los que trata el artículo. Allí es muy fácil ver mulatos rubios y de ojos verdes por ejemplo”, señala.
Si en lugar de una serie sobre crímenes como la propuesta al científico, se trabajara con la enésima entrega de Indiana Jones —o de su hijo o nietos—, el robot mencionado al principio de este artículo podría llamarse
Svante Pääbo, en un homenaje al paleogenetista más famoso, capaz de obtener el ADN de neandertales de hace 30.000 años. Y también para este campo las posibilidades de este tipo de estudios, aún incipientes, sería clara. Carles Lalueza, del
Instituto de Biología Evolutiva de Barcelona, colega de Pääbo, también señala el éxito de usar un grupo de voluntarios de distintos orígenes. El estudio “toma una ventaja clarísima al usar individuos de ancestralidad mixta africano-europea, que tienen, de origen, rasgos muy similares”, afirma. “Hacen bien, empiezan por lo más fácil. Por eso les ha bastado con mirar unas decenas de genes”, para obtener información de rasgos característicos como “la nariz o la diferencia orbital”.
Que el trabajo es prometedor lo destaca el paleoantropólogo Antonio Rosas. “Es muy interesante. Es de las primeras veces que se combinan dos metodologías tan potentes y tan diferentes: la secuenciación genética y la morfometría geometría, que es la manera de aprehender la forma de la cara y relacionarlo con la información genética. Ahí está su potencial de futuro”, apunta.
Curiosamente, los forenses parecen más reacios a opinar sobre lo que se perfila como una herramienta fundamental. Y, entre ellos, los que utilizan estas aproximaciones en la práctica, como la policía, son más elusivos aún. Porque pese al revuelo causado, de momento este tipo de aproximaciones tiene mucho de potencial, y poca utilidad práctica. “El estudio es todavía muy preliminar y no se puede aplicar en la práctica forense aún pero abre la vía para encontrar genes candidatos que deben ser aún replicados en otras poblaciones y pasar, además, otros estudios de validación forense”, indica tajante Carracedo.
“Aún tenemos una caja negra, desconocemos cómo funciona el desarrollo. Solo se ha trabajado con 20 genes, y no basta con cuatro cambios en ellos para explicarlo todo”, abunda el paleoantropólogo Rosas.
El primer paso está dado, pero queda el ajuste fino. “Si quisiéramos extrapolar a individuos europeos, en vez de decenas de genes necesitaríamos centenares o miles”, apunta Lalueza. “Los modelos probabilísticos deben de ser mejorados y seguramente aparecerán otros estudios con más genes y, como en las enfermedades comunes habría que ver interacción gen-gen y con el ambiente (la epigenética también jugará un papel). Pero proporciona las bases para que se pueda conseguir”, opina Carracedo.
Los propios autores del trabajo que ha suscitado el debate son conscientes de sus limitaciones. “Aunque hace falta mucho trabajo antes de que podamos saber siquiera cuantos genes habrá que estudiar para calcular la forma de una cara de una forma útil, y habrá que estudiar a muchas más poblaciones antes de que sepamos cómo de generalizables son estos trabajos”, afirman en su artículo, pero no le quitan valor: “Estos resultados ofrecen tanto el ímpetu como el marco analítico para estos trabajos”.
“De momento, con SNP se puede hacer en genética forense, además de identificación de un individuo, la predicción del origen biogeográfico y ancestralidad (lo que da una probabilidad enorme para grandes grupos continentales y cada vez afinamos más). La primera vez que se aplicó este enfoque fue en el 11-M. También tuvimos éxito al utilizarla en la operación Minstead del Reino Unido donde ayudamos a ver la ancestralidad y algunas características físicas lo que ayudó a la policía británica a descubrir al agresor sexual (seguramente el que cometió más agresiones sexuales en serie de la historia durante 18 años)”, señala Carracedo.
Una prueba de lo difícil que es establecer una relación entre la apariencia y los genes es el estudio de la estatura. “Se han relacionado centenares de genes, y con ellos no se explica más que el 10%. Eso da idea de la complejidad”, indica Lalueza.
De hecho, en una especie de salto temporal, el estudio de nuestros ancestros está aportando mucha información sobre las posibilidades —y limitaciones— de la genética forense. Un artículo de hace una semana, precisamente de Svante Pääbo, hacía un ejercicio similar al comparar forma y genes, pero, en este caso, no se fijaba en las caras, sino en el cuerpo. No se trataba de descubrir la forma a partir de los genes, sino de identificar qué material genético se conserva, y, a partir de él, ver qué rasgos se mantienen, pero la idea es la misma.
En cualquier caso, como saben todos los genetistas actuales, conocer el ADN implicado de una manera o de otra en un proceso biológico —sea la forma de la cara o una enfermedad, que es donde más se han estudiado— es solo la primera parte. Como dice Antonio Rosas, “dar el salto entre información genética y apariencia”.
Y aquí entra el proceloso mundo de las ómicas, las otras ciencias que, tras la descripción del genoma humano a principios de este siglo, se encargan de explicar, en primer lugar, por qué con eso no basta. Denominadas así por el sufijo que las forman, la proteómica y, sobre todo, la epigenómica tienen mucho que decir al respecto.
“Necesitamos saber el algoritmo genético”, dice Rosas. El mecanismo por el que unos genes actúan sobre otros, activándolos o inhibiéndolos. El paleantropólogo cree que, en ese sentido, el artículo sobre el cuerpo del neandertal u otro publicado en febrero y publicado también en PLOS One sobre el epigenoma de esta especie de homínidos va incluso “un paso más allá en la misma dirección: acotar el conocimiento que relaciona la anatomía macroscópica y la base genética que la genera”. Lo que estamos haciendo es “aproximar el fenotipo al genotipo”, indica Rosas.
El epigenoma es el sistema de señalización de los genes, lo que hace que en una célula se activen las instrucciones para que se comporte como una neurona o un cardiocito. Pero, además, si modificar el genoma es complicado, hacerlo con el epigenoma no lo es tanto. Factores como la alimentación o la contaminación tienen su efecto —por eso el tabaco o algunas dietas están relacionadas con el cáncer, una enfermedad de clara base genética ya que actúa al nivel de los procesos básicos de las células—. Así que probablemente esos robots de película, el Grissom y el Pääbo que hemos usado como ejemplos, tendrán que ir más allá y no solo leer las bases químicas, sino que deberán tener en cuenta su sistema regulatorio.
Después de este primer paso, hay ideas variadas sobre los futuros. Manuel Pérez-Alonso Director del Instituto de Medicina Genómica de Valencia, cree que todavía “no se ha hecho una búsqueda sistemática de los genes” relacionados con el aspecto. “Hasta ahora buscábamos los de las enfermedades”, dice. “Aunque no es una realidad que a día de hoy podamos reconstruir una cara a partir del ADN, podemos vaticinar que cuando se terminen de encontrar las causas genéticas de las enfermedades, los estudios puedan dedicarse a estos aspectos”, opina Pérez-Alonso.
Lalueza no duda tampoco del potencial de estas técnicas, aunque les ve otro problema. A medida que se quiera obtener más información, hará falta que las muestras genéticas sean mayores y estén en mejor estado. “Cualquiera sabe lo difícil que es genotipar muestras degradadas”, afirma. Probablemente habrá que construir bases de datos casi país a país. “En Europa la variabilidad no es muy grande”, afirma, y esto es una dificultad añadida. Esta especie de uniformidad en lo más íntimo es un problema añadido. En vez de 20 genes, habrá que estudiar sutiles diferencias en cientos o miles, lo que implica tener un material biológico de primera calidad.
Rosas no es tan escéptico. “La verdad es que en 5 o 10 años las cosas van tan deprisa que no nos sorprendería que con este planteamiento estemos avanzando una barbaridad”, comenta optimista.
Lalueza pone como ejemplo el estudio que se acaba de hacer sobre la sangre supuestamente conservada de Luis XVI de Francia, cuya autenticidad se ha descartado. “A partir de su genoma hemos llegado a cuanto podíamos saber, como el color de los ojos y el pelo” del individuo cuya sangre se guardó en aquella calabaza. Ha sido la comparación con sus descendientes —es lo que tienen las monarquías, que se basan en la trazabilidad genealógica— la que ha llevado a descartar que esa sangre sea la del rey ejecutado en 1793. Es una muestra del estado de la ciencia actualmente, y, también, de su potencial futuro.
Como en otros muchos asuntos, en ciencia que algo se pueda hacer implica, casi como un axioma, que alguien lo va a hacer. Y, en este caso, el proceso de relacionar genes con aspecto tiene una derivada casi comercial: el día que se sepa qué condicionantes del ADN determinan la forma de la cara, surgirá la tentación de seleccionar embriones para que presenten ciertas variantes. Por ejemplo, nacer con el hoyuelo de Kirk Douglas o los ojos de Lauren Bacall, si es que la barbilla de papá o la mirada de mamá no son suficientes o se trata de progenitores cinéfilos.
“Esa posibilidad está ahí, por supuesto”, indica Pérez-Alonso, “aunque las leyes españolas prohíben la selección de embriones salvo por causas médicas. Desde un punto de vista ético, moral y legal está prohibido”, insiste.
El debate ya surgió con los diagnósticos preimplantacionales, y en la inmensa mayoría de los países se llegó a la determinación de que solo se puede elegir sexo de un bebé si es para evitar una enfermedad genética. Pero ni siquiera esta postura es monolítica. En Bélgica, recuerda Pérez-Alonso, ya se puede decidir si se quiere implantar un embrión masculino o uno femenino sin tener que justificarlo. En cambio, en otros países como India o China las autoridades intentan que los padres no sepan el sexo del bebé antes del parto —prohibiendo las ecografías que no sean estrictamente necesarias, por ejemplo— para evitar el aborto selectivo de embriones femeninos, lo que ha llevado a un desequilibrio poblacional preocupante.
Pero la posibilidad estaría ahí. Elegir un bebé rubio o con ojos azules, por no salirse del tópico ibérico, ya es posible, aunque no se hace. En este caso, los robots científicos se usarían a partir de una célula del embrión, y serviría para seleccionar los rasgos que va a tener la descendencia. Una aparente frivolidad que seguro que tendría muchos adeptos.
Sea para identificar cadáveres o delincuentes, o para determinar qué nos hace guapos o feos, la ciencia ha dado el primer paso. Con las posibilidades de la informática actual, las películas sobre Grissom o Pääbo, dentro de muy poco, no serán ciencia ficción.